enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    Note on second moment of area: The moment of inertia of a body moving in a plane and the second moment of area of a beam's cross-section are often confused. The moment of inertia of a body with the shape of the cross-section is the second moment of this area about the z {\displaystyle z} -axis perpendicular to the cross-section, weighted by its ...

  4. I-beam - Wikipedia

    en.wikipedia.org/wiki/I-beam

    The ideal beam is the one with the least cross-sectional area (and hence requiring the least material) needed to achieve a given section modulus. Since the section modulus depends on the value of the moment of inertia, an efficient beam must have most of its material located as far from the neutral axis as possible. The farther a given amount ...

  5. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    Using this equation it is possible to calculate the bending stress at any point on the beam cross section regardless of moment orientation or cross-sectional shape. Note that M y , M z , I y , I z , I y z {\displaystyle M_{y},M_{z},I_{y},I_{z},I_{yz}} do not change from one point to another on the cross section.

  6. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition. Bending stiffness of a beam can analytically be derived from the equation of beam deflection when it is applied by a force.

  7. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    Computing the moment of force in a beam. An important part of determining bending moments in practical problems is the computation of moments of force. Let be a force vector acting at a point A in a body. The moment of this force about a reference point (O) is defined as [2]

  8. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The column is free from initial stress. The weight of the column is neglected. The column is initially straight (no eccentricity of the axial load). Pin joints are friction-less (no moment constraint) and fixed ends are rigid (no rotation deflection). The cross-section of the column is uniform throughout its length.

  9. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    In this case, the equation governing the beam's deflection can be approximated as: = () where the second derivative of its deflected shape with respect to (being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal ...