Search results
Results from the WOW.Com Content Network
Mutual recursion is very common in functional programming, and is often used for programs written in LISP, Scheme, ML, and similar programming languages. For example, Abelson and Sussman describe how a meta-circular evaluator can be used to implement LISP with an eval-apply cycle. [7] In languages such as Prolog, mutual recursion is almost ...
MIT Press and McGraw–Hill, 2001. ISBN 0-262-03293-7. Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here ...
More Expressive Languages: Multiple passes obviate the need for forward declarations, allowing mutual recursion to be implemented elegantly. The prime examples of languages requiring forward declarations due to the requirement of being compilable in a single pass include C and Pascal , whereas Java does not have forward declarations.
Anonymous recursion is primarily of use in allowing recursion for anonymous functions, particularly when they form closures or are used as callbacks, to avoid having to bind the name of the function. Anonymous recursion primarily consists of calling "the current function", which results in direct recursion .
In computer science, the reentrant mutex (recursive mutex, recursive lock) is a particular type of mutual exclusion (mutex) device that may be locked multiple times by the same process/thread, without causing a deadlock.
Because fixed-point combinators can be used to implement recursion, it is possible to use them to describe specific types of recursive computations, such as those in fixed-point iteration, iterative methods, recursive join in relational databases, data-flow analysis, FIRST and FOLLOW sets of non-terminals in a context-free grammar, transitive ...
Notable examples of systems employing polymorphic recursion include Dussart, Henglein and Mossin's binding-time analysis [2] and the Tofte–Talpin region-based memory management system. [3] As these systems assume the expressions have already been typed in an underlying type system (not necessary employing polymorphic recursion), inference can ...
Dekker's algorithm is the first known correct solution to the mutual exclusion problem in concurrent programming where processes only communicate via shared memory. The solution is attributed to Dutch mathematician Th. J. Dekker by Edsger W. Dijkstra in an unpublished paper on sequential process descriptions [1] and his manuscript on cooperating sequential processes. [2]