Search results
Results from the WOW.Com Content Network
Excel graph of the difference between two evaluations of the smallest root of a quadratic: direct evaluation using the quadratic formula (accurate at smaller b) and an approximation for widely spaced roots (accurate for larger b). The difference reaches a minimum at the large dots, and round-off causes squiggles in the curves beyond this minimum.
1.1 What is the difference between formulas and algorithms? 6 comments. 1.2 Malware. 4 comments. 1.3 Method in Java. 11 comments. 1.4 Uexpress topics in URL. 5 comments.
Jenks used the analogy of a “blanket of error” to describe the need to use elements other than the mean to generalize data. The three dimensional models were created to help Jenks visualize the difference between data classes. His aim was to generalize the data using as few planes as possible and maintain a constant “blanket of error”.
Formulas in the B column multiply values from the A column using relative references, and the formula in B4 uses the SUM() function to find the sum of values in the B1:B3 range. A formula identifies the calculation needed to place the result in the cell it is contained within. A cell containing a formula, therefore, has two display components ...
for + (compare this with formula (3) where + was given explicitly rather than as an unknown in an equation). This is a quadratic equation , having one negative and one positive root . The positive root is picked because in the original equation the initial condition is positive, and then y {\displaystyle y} at the next time step is given by
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).
Duality gap — difference between primal and dual solution; Fenchel's duality theorem — relates minimization problems with maximization problems of convex conjugates; Perturbation function — any function which relates to primal and dual problems; Slater's condition — sufficient condition for strong duality to hold in a convex ...