Ads
related to: euclidean tiling
Search results
Results from the WOW.Com Content Network
Following Grünbaum and Shephard (section 1.3), a tiling is said to be regular if the symmetry group of the tiling acts transitively on the flags of the tiling, where a flag is a triple consisting of a mutually incident vertex, edge and tile of the tiling. This means that, for every pair of flags, there is a symmetry operation mapping the first ...
An example of uniform tiling in the Archeological Museum of Seville, Sevilla, Spain: rhombitrihexagonal tiling Regular tilings and their duals drawn by Max Brückner in Vielecke und Vielflache (1900) This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane , and their dual tilings.
There are 4 symmetry classes of reflection on the sphere, and three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are also listed. (Increasing any of the numbers defining a hyperbolic or Euclidean tiling makes another hyperbolic tiling.) Point groups:
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra; these can be considered uniform tilings of the sphere.
The tiling images show a single spherical polygon face in yellow. Name Image ... Ideal vertices now appear when the vertex figure is a Euclidean tiling, becoming ...
In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).
List of Euclidean uniform tilings; Uniform tiling symmetry mutations; W. Wang tile This page was last edited on 5 November 2014, at 22:50 (UTC). ...
In geometry of the Euclidean plane, the 3-4-3-12 tiling is one of 20 2-uniform tilings of the Euclidean plane by regular polygons, containing regular triangles, squares, and dodecagons, arranged in two vertex configuration: 3.4.3.12 and 3.12.12.
Ads
related to: euclidean tiling