Search results
Results from the WOW.Com Content Network
Apache Spark has its architectural foundation in the resilient distributed dataset (RDD), a read-only multiset of data items distributed over a cluster of machines, that is maintained in a fault-tolerant way. [2] The Dataframe API was released as an abstraction on top of the RDD, followed by the Dataset API.
Checkpointing is a technique that provides fault tolerance for computing systems. It involves saving a snapshot of an application's state, so that it can restart from that point in case of failure. This is particularly important for long-running applications that are executed in failure-prone computing systems.
An error-tolerant design (or human-error-tolerant design [1]) is one that does not unduly penalize user or human errors. It is the human equivalent of fault tolerant design that allows equipment to continue functioning in the presence of hardware faults, such as a "limp-in" mode for an automobile electronics unit that would be employed if ...
There is a difference between fault tolerance and systems that rarely have problems. For instance, the Western Electric crossbar systems had failure rates of two hours per forty years, and therefore were highly fault resistant. But when a fault did occur they still stopped operating completely, and therefore were not fault tolerant.
The need to control software fault is one of the most rising challenges facing software industries today. Fault tolerance must be a key consideration in the early stage of software development. There exist different mechanisms for software fault tolerance, among which: Recovery blocks; N-version software; Self-checking software
graph with an example of steps in a failure mode and effects analysis. Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects.
ATPG (acronym for both automatic test pattern generation and automatic test pattern generator) is an electronic design automation method or technology used to find an input (or test) sequence that, when applied to a digital circuit, enables automatic test equipment to distinguish between the correct circuit behavior and the faulty circuit behavior caused by defects.
Engineering fits are generally used as part of geometric dimensioning and tolerancing when a part or assembly is designed. In engineering terms, the "fit" is the clearance between two mating parts, and the size of this clearance determines whether the parts can, at one end of the spectrum, move or rotate independently from each other or, at the other end, are temporarily or permanently joined.