Search results
Results from the WOW.Com Content Network
In statistics, a confidence interval (CI) is a tool for estimating a parameter, such as the mean of a population. [1] To make a CI, an analyst first selects a confidence level , such as 95%. The analyst then follows a procedure that outputs an interval.
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".
Ci – cosine integral function. cis – cos + i sin function. (Also written as expi.) Cl – conjugacy class. cl – topological closure. CLT – central limit theorem. cod, codom – codomain. cok, coker – cokernel. colsp – column space of a matrix. conv – convex hull of a set. Cor – corollary. corr – correlation. cos – cosine ...
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
The next step is standardizing (dividing by the population standard deviation), if the population parameters are known, or studentizing (dividing by an estimate of the standard deviation), if the parameters are unknown and only estimated.
In these hypothetical repetitions, independent data sets following the same probability distribution as the actual data are considered, and a confidence interval is computed from each of these data sets; see Neyman construction. The coverage probability is the fraction of these computed confidence intervals that include the desired but ...
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
Fieller showed that if a and b are (possibly correlated) means of two samples with expectations and , and variances and and covariance , and if ,, are all known, then a (1 − α) confidence interval (m L, m U) for / is given by