Search results
Results from the WOW.Com Content Network
The lattice of subgroups of the infinite cyclic group can be described in the same way, as the dual of the divisibility lattice of all positive integers. If the infinite cyclic group is represented as the additive group on the integers, then the subgroup generated by d is a subgroup of the subgroup generated by e if and only if e is a divisor ...
A locally cyclic group is a group in which each finitely generated subgroup is cyclic. An example is the additive group of the rational numbers: every finite set of rational numbers is a set of integer multiples of a single unit fraction, the inverse of their lowest common denominator, and generates as a subgroup a cyclic group of integer ...
The additive group of rational numbers (Q, +) is locally cyclic – any pair of rational numbers a/b and c/d is contained in the cyclic subgroup generated by 1/(bd). [2]The additive group of the dyadic rational numbers, the rational numbers of the form a/2 b, is also locally cyclic – any pair of dyadic rational numbers a/2 b and c/2 d is contained in the cyclic subgroup generated by 1/2 max ...
For example, Z no longer qualifies, since one has [0, n, −1] for every n. As a corollary to Ćwierczkowski's proof, every Archimedean cyclically ordered group is a subgroup of T itself. [ 3 ] This result is analogous to Otto Hölder 's 1901 theorem that every Archimedean linearly ordered group is a subgroup of R .
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
For example, in S 5, one cyclic subgroup of order 5 is generated by (13254), whereas the largest cyclic subgroups of S 5 are generated by elements like (123)(45) that have one cycle of length 3 and another cycle of length 2. This rules out many groups as possible subgroups of symmetric groups of a given size.
Since for any n ≥ 2, the free group on 2 generators F 2 contains the free group on n generators F n as a subgroup of finite index (in fact n − 1), once one non-cyclic free group on finitely many generators is known to be not boundedly generated, this will be true for all of them.
G 0 is the trivial subgroup; G i is a normal subgroup of G i+1 (for every i between 0 and n - 1) and the quotient group G i+1 / G i is a cyclic group (for every i between 0 and n - 1) A metacyclic group is a polycyclic group with n ≤ 2, or in other words an extension of a cyclic group by a cyclic group.