Search results
Results from the WOW.Com Content Network
In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...
In atmospheric science, geostrophic flow (/ ˌ dʒ iː ə ˈ s t r ɒ f ɪ k, ˌ dʒ iː oʊ-,-ˈ s t r oʊ-/ [1] [2] [3]) is the theoretical wind that would result from an exact balance between the Coriolis force and the pressure gradient force. This condition is called geostrophic equilibrium or geostrophic balance (also known as geostrophy).
The force pushing the water towards the low pressure region is called the pressure gradient force. In a geostrophic flow, instead of water moving from a region of high pressure (or high sea level) to a region of low pressure (or low sea level), it moves along the lines of equal pressure . This occurs because the Earth is rotating.
The geostrophic wind component is the result of the balance between Coriolis force and pressure gradient force. It flows parallel to isobars and approximates the flow above the atmospheric boundary layer in the midlatitudes. [ 4 ]
The horizontal pressure gradient is a two-dimensional vector resulting from the projection of the pressure gradient onto a local horizontal plane. Near the Earth's surface, this horizontal pressure gradient force is directed from higher toward lower pressure. Its particular orientation at any one time and place depends strongly on the weather ...
The Coriolis force deflects the air movement to the right in the northern hemisphere and the left in the southern one, which makes the winds parallel to the isobars on an elevation in pressure card. [1] It is also referred as the geostrophic wind. [2] Pressure differences depend, in turn, on the average temperature in the air column.
The Walker circulation is associated with the pressure gradient force that results from a high pressure system over the eastern Pacific Ocean, and a low pressure system over Indonesia. The Walker circulations of the tropical Indian, Pacific, and Atlantic basins result in westerly surface winds in northern summer in the first basin and easterly ...
While geostrophic motion refers to the wind that would result from an exact balance between the Coriolis force and horizontal pressure-gradient forces, [1] quasi-geostrophic (QG) motion refers to flows where the Coriolis force and pressure gradient forces are almost in balance, but with inertia also having an effect. [2]