Search results
Results from the WOW.Com Content Network
In computing, data transformation is the process of converting data from one format or structure into another format or structure. It is a fundamental aspect of most data integration [1] and data management tasks such as data wrangling, data warehousing, data integration and application integration.
In statistics, a power transform is a family of functions applied to create a monotonic transformation of data using power functions.It is a data transformation technique used to stabilize variance, make the data more normal distribution-like, improve the validity of measures of association (such as the Pearson correlation between variables), and for other data stabilization procedures.
Affine transformation (Euclidean geometry) Bäcklund transform; Bilinear transform; Box–Muller transform; Burrows–Wheeler transform (data compression) Chirplet transform; Distance transform; Fractal transform; Gelfand transform; Hadamard transform; Hough transform (digital image processing) Inverse scattering transform; Legendre ...
%PDF-1.3 %Äåòåë§ó ÐÄÆ 4 0 obj /Length 5 0 R /Filter /FlateDecode >> stream x ¥ZÛrÛF }ÇWôÆ/d c .©ÍVYÞu ç²NI ...
The Dataframe API was released as an abstraction on top of the RDD, followed by the Dataset API. In Spark 1.x, the RDD was the primary application programming interface (API), but as of Spark 2.x use of the Dataset API is encouraged [3] even though the RDD API is not deprecated. [4] [5] The RDD technology still underlies the Dataset API. [6] [7]
The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...
A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.
In probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. [1]