Search results
Results from the WOW.Com Content Network
Almgren–Pitts min-max theory; Approximation theory; Arakelov theory; Asymptotic theory; Automata theory; Bass–Serre theory; Bifurcation theory; Braid theory; Brill–Noether theory; Catastrophe theory; Category theory; Chaos theory; Character theory; Choquet theory; Class field theory; Cobordism theory; Coding theory; Cohomology theory ...
List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
This is a list of mathematical logic topics. For traditional syllogistic logic, see the list of topics in logic . See also the list of computability and complexity topics for more theory of algorithms .
German mathematician Carl Friedrich Gauss said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theory also studies the natural, or whole, numbers. One of the central concepts in number theory is that of the prime number , and there are many questions about primes that appear simple but whose ...
Kőnig's theorem (set theory) Kőnig's theorem (graph theory) Lagrange's theorem (group theory) Lagrange's theorem (number theory) Liouville's theorem (complex analysis) Markov's inequality (proof of a generalization) Mean value theorem; Multivariate normal distribution (to do) Holomorphic functions are analytic; Pythagorean theorem; Quadratic ...
Likewise, the mathematical literature sometimes refers to the fundamental lemma of a field. The term lemma is conventionally used to denote a proven proposition which is used as a stepping stone to a larger result, rather than as a useful statement in-and-of itself.
The following list is meant to serve as a repository for compiling a list of such ideas. The idea of the Pythagoreans that all numbers can be expressed as a ratio of two whole numbers . This was disproved by one of Pythagoras ' own disciples, Hippasus , who showed that the square root of two is what we today call an irrational number .
There are two common ways to specify theories: List or describe a set of sentences in the language L σ, called the axioms of the theory. Give a set of σ-structures, and define a theory to be the set of sentences in L σ holding in all these models. For example, the "theory of finite fields" consists of all sentences in the language of fields ...