enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.

  3. Scheffé's method - Wikipedia

    en.wikipedia.org/wiki/Scheffé's_method

    It is particularly useful in analysis of variance (a special case of regression analysis), and in constructing simultaneous confidence bands for regressions involving basis functions. Scheffé's method is a single-step multiple comparison procedure which applies to the set of estimates of all possible contrasts among the factor level means, not ...

  4. Confidence region - Wikipedia

    en.wikipedia.org/wiki/Confidence_region

    The confidence region is calculated in such a way that if a set of measurements were repeated many times and a confidence region calculated in the same way on each set of measurements, then a certain percentage of the time (e.g. 95%) the confidence region would include the point representing the "true" values of the set of variables being estimated.

  5. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    For example, the 68% confidence limits for a one-dimensional variable belonging to a normal distribution are approximately ± one standard deviation σ from the central value x, which means that the region x ± σ will cover the true value in roughly 68% of cases. If the uncertainties are correlated then covariance must be taken into account ...

  6. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is approximately 5 + (2⋅1) = 7, thus giving a prediction interval of approximately 3 to 7. Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1.

  7. Confidence distribution - Wikipedia

    en.wikipedia.org/wiki/Confidence_Distribution

    Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.

  8. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.

  9. Credible interval - Wikipedia

    en.wikipedia.org/wiki/Credible_interval

    For the case of a single parameter and data that can be summarised in a single sufficient statistic, it can be shown that the credible interval and the confidence interval coincide if the unknown parameter is a location parameter (i.e. the forward probability function has the form (|) = ()), with a prior that is a uniform flat distribution; [6 ...