Search results
Results from the WOW.Com Content Network
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2: scalar Catalytic activity concentration: Change in reaction rate due to presence of a catalyst per unit volume of the system kat⋅m −3: L −3 T −1 N: intensive Chemical potential: μ: Energy per unit change in amount of substance J/mol L 2 M T −2 N −1 ...
Absolute partial pressure 101.325 kPa (1.00000 atm; 1.01325 bar) for each gaseous reagent — the convention in most literature data but not the current standard state (100 kPa). Variations from these ideal conditions affect measured voltage via the Nernst equation.
For convenience it is often defined as the negative of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of the geopotential, without the negation. In addition to the actual potential (the geopotential), a theoretical normal potential and their difference, the disturbing potential, can also be defined.
The vertical axis of the band diagram represents the energy of an electron, which includes both kinetic and potential energy. The horizontal axis represents position, often not being drawn to scale. Note that the Heisenberg uncertainty principle prevents the band diagram from being drawn with a high positional resolution, since the band diagram ...
If there is a change in the potential energy of a system; for example μ 1 >μ 2 (μ is Chemical potential) an energy flow will occur from S 1 to S 2, because nature always prefers low energy and maximum entropy. Molecular diffusion is typically described mathematically using Fick's laws of diffusion.
i.e., the external potential is the sum of electric potential, gravitational potential, etc. (where q and m are the charge and mass of the species, V ele and h are the electric potential [15] and height of the container, respectively, and g is the acceleration due to gravity). The internal chemical potential includes everything else besides the ...
The atmospheric potential gradient leads to an ion flow from the positively charged atmosphere to the negatively charged earth surface. Over a flat field on a day with clear skies, the atmospheric potential gradient is approximately 120 V/m. [ 18 ]