Search results
Results from the WOW.Com Content Network
There are three symbols for NOR gates: the American (ANSI or 'military') symbol and the IEC ('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. For more information see Logic Gate Symbols. The ANSI symbol for the NOR gate is a standard OR gate with an inversion bubble connected.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
A single NOR gate. A NOR gate or a NOT OR gate is a logic gate which gives a positive output only when both inputs are negative.. Like NAND gates, NOR gates are so-called "universal gates" that can be combined to form any other kind of logic gate.
In Boolean logic, logical NOR, [1] non-disjunction, or joint denial [1] is a truth-functional operator which produces a result that is the negation of logical or. That is, a sentence of the form ( p NOR q ) is true precisely when neither p nor q is true—i.e. when both p and q are false .
The logical NOR is an operation on two logical values, typically the values of two propositions, that produces a value of true if both of its operands are false. In other words, it produces a value of false if at least one of its operands is true. ↓ is also known as the Peirce arrow after its inventor, Charles Sanders Peirce , and is a Sole ...
A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device [1] (see ...
A logical formula is considered to be in CNF if it is a conjunction of one or more disjunctions of one or more literals. As in disjunctive normal form (DNF), the only propositional operators in CNF are or ( ∨ {\displaystyle \vee } ), and ( ∧ {\displaystyle \wedge } ), and not ( ¬ {\displaystyle \neg } ).
The stroke is named after Henry Maurice Sheffer, who in 1913 published a paper in the Transactions of the American Mathematical Society [10] providing an axiomatization of Boolean algebras using the stroke, and proved its equivalence to a standard formulation thereof by Huntington employing the familiar operators of propositional logic (AND, OR, NOT).