Search results
Results from the WOW.Com Content Network
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on. [7]
Clearance is variable in zero-order kinetics because a constant amount of the drug is eliminated per unit time, but it is constant in first-order kinetics, because the amount of drug eliminated per unit time changes with the concentration of drug in the blood. [3] [4]
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
t 1/2 is the half-life time of the drug, which is the time needed for the plasma drug concentration to drop to its half Therefore, the amount of drug present in the body at time t A t {\displaystyle A_{t}} is;
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.
Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]
For a typical second-order reaction with rate equation = [] [], if the concentration of reactant B is constant then = [] [] = ′ [], where the pseudo–first-order rate constant ′ = []. The second-order rate equation has been reduced to a pseudo–first-order rate equation, which makes the treatment to obtain an integrated rate equation much ...
Uranium-235 has a half-life of 703.8 million years. It was discovered in 1935 by Arthur Jeffrey Dempster. Its fission cross section for slow thermal neutrons is about 584.3 ± 1 barns. [1] For fast neutrons it is on the order of 1 barn. [2] Most neutron absorptions induce fission, though a minority (about 15%) result in the formation of uranium ...