Search results
Results from the WOW.Com Content Network
A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10 −21 J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the mode of the Maxwell–Boltzmann distribution for this temperature, E peak = k T.
Neutron porosity measurement employs a neutron source to measure the hydrogen index in a reservoir, which is directly related to porosity. The Hydrogen Index (HI) of a material is defined as the ratio of the concentration of hydrogen atoms per cm 3 in the material, to that of pure water at 75 °F.
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
The chance is dependent on the nuclide as well as neutron energy. For low and medium-energy neutrons, the neutron capture cross sections for fission (σ F), the cross section for neutron capture with emission of a gamma ray (σ γ), and the percentage of non-fissions are in the table at right. Fertile nuclides in nuclear fuels include:
The neutron flux from such a reactor is in the order of 10 12 neutrons cm −2 s −1. [1] The type of neutrons generated are of relatively low kinetic energy (KE), typically less than 0.5 eV. These neutrons are termed thermal neutrons. Upon irradiation, a thermal neutron interacts with the target nucleus via a non-elastic collision, causing ...
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
In contrast, the proton–proton chain reaction produces energy at a rate proportional to the fourth power of temperature, the CNO cycle at about the 17th power of the temperature, and both are linearly proportional to the density. This strong temperature dependence has consequences for the late stage of stellar evolution, the red-giant stage.
The following table lists some binding energies and mass defect values. [21] Notice also that we use 1 Da = 931.494 028 (23) MeV/c 2. To calculate the binding energy we use the formula Z (m p + m e) + N m n − m nuclide where Z denotes the number of protons in the nuclides and N their number of neutrons.