Search results
Results from the WOW.Com Content Network
In either case, the partition function may be solved exactly using eigenanalysis. If the matrices are all the same matrix W , the partition function may be approximated as the N th power of the largest eigenvalue of W , since the trace is the sum of the eigenvalues and the eigenvalues of the product of two diagonal matrices equals the product ...
The partition function is commonly used as a probability-generating function for expectation values of various functions of the random variables. So, for example, taking β {\displaystyle \beta } as an adjustable parameter, then the derivative of log ( Z ( β ) ) {\displaystyle \log(Z(\beta ))} with respect to β {\displaystyle \beta }
The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for
The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.
The weighted version of the decision problem was one of Karp's 21 NP-complete problems; [11] Karp showed the NP-completeness by a reduction from the partition problem. The canonical optimization variant of the above decision problem is usually known as the Maximum-Cut Problem or Max-Cut and is defined as: Given a graph G, find a maximum cut.
The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.
A polymer field theory is a statistical field theory describing the statistical behavior of a neutral or charged polymer system. It can be derived by transforming the partition function from its standard many-dimensional integral representation over the particle degrees of freedom in a functional integral representation over an auxiliary field function, using either the Hubbard–Stratonovich ...
The partition problem is a special case of two related problems: In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S).