Search results
Results from the WOW.Com Content Network
On the ellipsoid or on spherical projection, all circles of latitude are rhumb lines, except the Equator. The latitude of the circle is approximately the angle between the Equator and the circle, with the angle's vertex at Earth's centre. The Equator is at 0°, and the North Pole and South Pole are at 90° north and 90° south, respectively ...
The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.
Just as a 3D shape can be projected onto a flat sheet, so a 4-D shape can be projected onto 3-space or even onto a flat sheet. One common projection is a Schlegel diagram which uses stereographic projection of points on the surface of a 3-sphere into three dimensions, connected by straight edges, faces, and cells drawn in 3-space.
The polytopes of rank 2 (2-polytopes) are called polygons.Regular polygons are equilateral and cyclic.A p-gonal regular polygon is represented by Schläfli symbol {p}.. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular.
The equator, a circle of latitude that divides a spheroid, such as Earth, into the northern and southern hemispheres. On Earth, it is an imaginary line located at 0 degrees latitude . 0°
Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.
The lines from pole to pole are lines of constant longitude, or meridians. The circles parallel to the Equator are circles of constant latitude, or parallels. The graticule shows the latitude and longitude of points on the surface. In this example, meridians are spaced at 6° intervals and parallels at 4° intervals.
A medieval depiction of the Ecumene (1482, Johannes Schnitzer, engraver), constructed after the coordinates in Ptolemy's Geography and using his second map projection. In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane.