Search results
Results from the WOW.Com Content Network
These are known as the Navier–Stokes equations. [35] The momentum balance equations can be extended to more general materials, including solids. For each surface with normal in direction i and force in direction j, there is a stress component σ ij. The nine components make up the Cauchy stress tensor σ, which includes both pressure and shear.
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]
A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Momentum of particle multiplied by distance travelled J/Hz L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit ...
The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane, = = ^ the following general results apply to the particle.
If the body is at rest (v = 0), i.e. in its center-of-momentum frame (p = 0), we have E = E 0 and m = m 0; thus the energy–momentum relation and both forms of the mass–energy relation (mentioned above) all become the same. A more general form of relation holds for general relativity.
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.