Search results
Results from the WOW.Com Content Network
Typically, around 3,000 psi (21 MPa) of pressure is applied in compression, and the original material volume is reduced by about half. Creating CEBs differs from rammed earth in that the latter uses a larger formwork into which earth is poured and manually tamped down, creating larger forms such as a whole wall or more at one time, rather than ...
A w/c ratio higher than 0.60 is not acceptable as fresh concrete becomes "soup" [2] and leads to a higher porosity and to very poor quality hardened concrete as publicly stated by Prof. Gustave Magnel (1889-1955, Ghent University, Belgium) during an official address to American building contractors at the occasion of one of his visits in the ...
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed.All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
High-strength concrete has a compressive strength greater than 40 MPa (6000 psi). In the UK, BS EN 206-1 [3] defines High strength concrete as concrete with a compressive strength class higher than C50/60. High-strength concrete is made by lowering the water-cement (W/C) ratio to 0.35 or lower.
Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, [1] and is the most widely used building material. [2] Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined. [3]
Abrams' law (also called Abrams' water-cement ratio law) [1] is a concept in civil engineering. The law states the strength of a concrete mix is inversely related to the mass ratio of water to cement. [1] [2] As the water content increases, the strength of concrete decreases. Abrams’ law is a special case of a general rule formulated ...
Self-consolidating concrete or self-compacting concrete (SCC) [1] is a concrete mix which has a low yield stress, high deformability, good segregation resistance (prevents separation of particles in the mix), and moderate viscosity (necessary to ensure uniform suspension of solid particles during transportation, placement (without external compaction), and thereafter until the concrete sets).
Their addition allows to decrease the water-to-cement ratio of concrete or mortar without negatively affecting the workability of the mixture. It enables the production of self-consolidating concrete and high-performance concrete. The water–cement ratio is the main factor determining the concrete strength and its durability. Superplasticizers ...