enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Biasvariance_tradeoff

    Even though the biasvariance decomposition does not directly apply in reinforcement learning, a similar tradeoff can also characterize generalization. When an agent has limited information on its environment, the suboptimality of an RL algorithm can be decomposed into the sum of two terms: a term related to an asymptotic bias and a term due ...

  3. Occam's razor - Wikipedia

    en.wikipedia.org/wiki/Occam's_razor

    The biasvariance tradeoff is a framework that incorporates the Occam's razor principle in its balance between overfitting (associated with lower bias but higher variance) and underfitting (associated with lower variance but higher bias). [38]

  4. Trade-off - Wikipedia

    en.wikipedia.org/wiki/Trade-off

    In economics a trade-off is expressed in terms of the opportunity cost of a particular choice, which is the loss of the most preferred alternative given up. [2] A tradeoff, then, involves a sacrifice that must be made to obtain a certain product, service, or experience, rather than others that could be made or obtained using the same required resources.

  5. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    But if the learning algorithm is too flexible, it will fit each training data set differently, and hence have high variance. A key aspect of many supervised learning methods is that they are able to adjust this tradeoff between bias and variance (either automatically or by providing a bias/variance parameter that the user can adjust).

  6. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.

  7. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    The MSPE can be decomposed into two terms: the squared bias (mean error) ... Bias-variance tradeoff; Mean squared error; Errors and residuals in statistics;

  8. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias (see biasvariance tradeoff). [ 4 ] The theory was first introduced by Hoerl and Kennard in 1970 in their Technometrics papers "Ridge regressions: biased estimation of nonorthogonal problems" and "Ridge regressions ...

  9. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    This is known as the biasvariance tradeoff. Keeping a function simple to avoid overfitting may introduce a bias in the resulting predictions, while allowing it to be more complex leads to overfitting and a higher variance in the predictions. It is impossible to minimize both simultaneously.