Search results
Results from the WOW.Com Content Network
A unit distance graph with 16 vertices and 40 edges. In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one.
These are the three vertices A such that d(A, B) ≤ 3 for all vertices B. Each black vertex is a distance of at least 4 from some other vertex. The center (or Jordan center [1]) of a graph is the set of all vertices of minimum eccentricity, [2] that is, the set of all vertices u where the greatest distance d(u,v) to other vertices v is
Equivalently, this set may be defined by setting L 0 = {r}, and then, for i > 0, defining L i to be the set of vertices that are neighbors to vertices in L i − 1 but are not themselves in any earlier level. [1] The level structure of a graph can be computed by a variant of breadth-first search: [2]: 176
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
The Seidel adjacency matrix is a (−1, 1, 0)-adjacency matrix. This matrix is used in studying strongly regular graphs and two-graphs. [3] The distance matrix has in position (i, j) the distance between vertices v i and v j. The distance is the length of a shortest path connecting the vertices.
In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
Given G = (V, E) and a matching M of G, a blossom B is a cycle in G consisting of 2k + 1 edges of which exactly k belong to M, and where one of the vertices v of the cycle (the base) is such that there exists an alternating path of even length (the stem) from v to an exposed vertex w. Finding Blossoms: Traverse the graph starting from an ...