enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.) This notation arises from the following geometric relationships: [ citation needed ] when measuring in radians, an angle of θ radians will correspond to an arc ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    where is the k th-degree elementary symmetric polynomial in the n variables = ⁡, =, …,, and the number of terms in the denominator and the number of factors in the product in the numerator depend on the number of terms in the sum on the left. [16]

  4. Trigonometric interpolation - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_interpolation

    Under the above conditions, there exists a solution to the problem for any given set of data points {x k, y k} as long as N, the number of data points, is not larger than the number of coefficients in the polynomial, i.e., N ≤ 2K+1 (a solution may or may not exist if N>2K+1 depending upon the particular set of data points).

  5. Slide rule scale - Wikipedia

    en.wikipedia.org/wiki/Slide_rule_scale

    arcsin(x) and arctan(x) sine and tan of small angles: 0.01 to 0.1: arcsin(0.01) to arcsin(0.1) 0.573° to 5.73° increase: also arctan of same x values T, T1 or T3: arctan(x) tangent: 0.1 to 1.0: arctan(0.1) to arctan(1.0) 5.71° to 45° increase: used with C or D. T: arctan(x) tangent: 1.0 to 10.0: arctan(1.0) to arctan(10) 45° to 84.3 ...

  6. Circular mean - Wikipedia

    en.wikipedia.org/wiki/Circular_mean

    A simple way to calculate the mean of a series of angles (in the interval [0°, 360°)) is to calculate the mean of the cosines and sines of each angle, and obtain the angle by calculating the inverse tangent. Consider the following three angles as an example: 10, 20, and 30 degrees.

  7. Gudermannian function - Wikipedia

    en.wikipedia.org/wiki/Gudermannian_function

    Twice the area of the purple triangle is the stereographic projection s = tan ⁠ 1 / 2 ⁠ ϕ = tanh ⁠ 1 / 2 ⁠ ψ. The blue point has coordinates (cosh ψ, sinh ψ). The red point has coordinates (cos ϕ, sin ϕ). The purple point has coordinates (0, s). Graph of the Gudermannian function. Graph of the inverse Gudermannian function.

  8. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    L 1, L 2: longitude of the points; L = L 2 − L 1: difference in longitude of two points; λ: Difference in longitude of the points on the auxiliary sphere; α 1, α 2: forward azimuths at the points; α: forward azimuth of the geodesic at the equator, if it were extended that far; s: ellipsoidal distance between the two points; σ: angular ...

  9. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The quantity 206 265 ″ is approximately equal to the number of arcseconds in a circle (1 296 000 ″), divided by 2π, or, the number of arcseconds in 1 radian. The exact formula is = ⁡ (″) and the above approximation follows when tan X is replaced by X.