enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bellman–Ford algorithm - Wikipedia

    en.wikipedia.org/wiki/BellmanFord_algorithm

    The BellmanFord algorithm is an algorithm that computes shortest paths from a single source vertex to all of the other vertices in a weighted digraph. [1] It is slower than Dijkstra's algorithm for the same problem, but more versatile, as it is capable of handling graphs in which some of the edge weights are negative numbers. [ 2 ]

  3. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.

  4. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Shortest path problem. BellmanFord algorithm: computes shortest paths in a weighted graph (where some of the edge weights may be negative) Dijkstra's algorithm: computes shortest paths in a graph with non-negative edge weights; Floyd–Warshall algorithm: solves the all pairs shortest path problem in a weighted, directed graph

  5. Distance-vector routing protocol - Wikipedia

    en.wikipedia.org/wiki/Distance-vector_routing...

    Distance-vector routing protocols use the BellmanFord algorithm.In these protocols, each router does not possess information about the full network topology.It advertises its distance value (DV) calculated to other routers and receives similar advertisements from other routers unless changes are done in the local network or by neighbours (routers).

  6. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.

  7. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    Compute dist(u), the shortest-path distance from root v to vertex u in G using Dijkstra's algorithm or BellmanFord algorithm. For all non-root vertices u , we can assign to u a parent vertex p u such that p u is connected to u , and that dist( p u ) + edge_dist( p u , u ) = dist( u ).

  8. Johnson's algorithm - Wikipedia

    en.wikipedia.org/wiki/Johnson's_algorithm

    The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the BellmanFord algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...

  9. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths. Finding k shortest paths is possible by extending Dijkstra's algorithm or the Bellman-Ford algorithm. [citation needed]