enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum-product number - Wikipedia

    en.wikipedia.org/wiki/Sum-product_number

    The natural numbers 0 and 1 are trivial sum-product numbers for all , and all other sum-product numbers are nontrivial sum-product numbers. For example, the number 144 in base 10 is a sum-product number, because 1 + 4 + 4 = 9 {\displaystyle 1+4+4=9} , 1 × 4 × 4 = 16 {\displaystyle 1\times 4\times 4=16} , and 9 × 16 = 144 {\displaystyle 9 ...

  3. Belief propagation - Wikipedia

    en.wikipedia.org/wiki/Belief_propagation

    Belief propagation, also known as sum–product message passing, is a message-passing algorithm for performing inference on graphical models, such as Bayesian networks and Markov random fields. It calculates the marginal distribution for each unobserved node (or variable), conditional on any observed nodes (or variables).

  4. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    The formula for an integration by parts is () ′ = [() ()] ′ (). Beside the boundary conditions , we notice that the first integral contains two multiplied functions, one which is integrated in the final integral ( g ′ {\displaystyle g'} becomes g {\displaystyle g} ) and one which is differentiated ( f {\displaystyle f} becomes f ...

  5. Erdős–Szemerédi theorem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Szemerédi_theorem

    This example is an instance of the Few Sums, Many Products [6] version of the sum-product problem of György Elekes and Imre Z. Ruzsa. A consequence of their result is that any set with small additive doubling (such as an arithmetic progression) has the lower bound on the product set | AA | = Ω(| A | 2 log −1 (| A |)).

  6. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...

  7. Factor graph - Wikipedia

    en.wikipedia.org/wiki/Factor_graph

    The messages of the sum–product algorithm are conceptually computed in the vertices and passed along the edges. A message from or to a variable vertex is always a function of that particular variable. For instance, when a variable is binary, the messages over the edges incident to the corresponding vertex can be represented as vectors of ...

  8. Rule of product - Wikipedia

    en.wikipedia.org/wiki/Rule_of_product

    In this example, the rule says: multiply 3 by 2, getting 6. The sets {A, B, C} and {X, Y} in this example are disjoint sets, but that is not necessary.The number of ways to choose a member of {A, B, C}, and then to do so again, in effect choosing an ordered pair each of whose components are in {A, B, C}, is 3 × 3 = 9.

  9. Combinatorial principles - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_principles

    The rule of sum is an intuitive principle stating that if there are a possible outcomes for an event (or ways to do something) and b possible outcomes for another event (or ways to do another thing), and the two events cannot both occur (or the two things can't both be done), then there are a + b total possible outcomes for the events (or total possible ways to do one of the things).