Search results
Results from the WOW.Com Content Network
The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed.
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
He considered seafloor spreading at divergent plate boundaries as an effect of it. [26] In his opinion mantle convection as used as a concept in the theory of plate tectonics is physically impossible. His theory includes the effect of solar wind (geomagnetic storms) as cause for the reversals of the Earth magnetic field. The question of mass ...
The plate theory is a model of volcanism that attributes all volcanic activity on Earth, even that which appears superficially to be anomalous, to the operation of plate tectonics. According to the plate theory, the principal cause of volcanism is extension of the lithosphere .
Plate tectonic theory explains topography using interactions between the tectonic plates, as influenced by viscous stresses created by flow within the underlying mantle. Since the mantle is extremely viscous, the mantle flow rate varies in pulses which are reflected in the lithosphere by small amplitude, long wavelength undulations.
Plates in the crust of the earth, according to the plate tectonics theory. In the general case, seafloor spreading starts as a rift in a continental land mass, similar to the Red Sea-East Africa Rift System today. [16] The process starts by heating at the base of the continental crust which causes it to become more plastic and less dense.
The theory of continental drift has since been validated and incorporated into the science of plate tectonics, which studies the movement of the continents as they ride on plates of the Earth's lithosphere. [2] The speculation that continents might have "drifted" was first put forward by Abraham Ortelius in 1596.