enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    The weighted version of the decision problem was one of Karp's 21 NP-complete problems; [11] Karp showed the NP-completeness by a reduction from the partition problem. The canonical optimization variant of the above decision problem is usually known as the Maximum-Cut Problem or Max-Cut and is defined as: Given a graph G, find a maximum cut.

  3. Category:Computational problems in graph theory - Wikipedia

    en.wikipedia.org/wiki/Category:Computational...

    Matching (graph theory) MaxDDBS; Maximal independent set; Maximum agreement subtree problem; Maximum common edge subgraph; Maximum common induced subgraph; Maximum cut; Maximum flow problem; Maximum weight matching; Metric k-center; Minimum k-cut; Mixed Chinese postman problem; Multi-trials technique

  4. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...

  6. Combinatorial optimization - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_optimization

    A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.

  7. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. [1]

  8. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.

  9. Graph cut optimization - Wikipedia

    en.wikipedia.org/wiki/Graph_cut_optimization

    Graph cut optimization is a combinatorial optimization method applicable to a family of functions of discrete variables, named after the concept of cut in the theory of flow networks. Thanks to the max-flow min-cut theorem , determining the minimum cut over a graph representing a flow network is equivalent to computing the maximum flow over the ...