Search results
Results from the WOW.Com Content Network
During differentiation, stem cells change their gene expression profiles. Recent studies have implicated a role for nucleosome positioning and histone modifications during this process. [38] There are two components of this process: turning off the expression of embryonic stem cell (ESC) genes, and the activation of cell fate genes.
Stem cell division and differentiation A: stem cell; B: progenitor cell; C: differentiated cell; 1: symmetric stem cell division; 2: asymmetric stem cell division; 3: progenitor division; 4: terminal differentiation. Adult stem cells, also called somatic (from Greek σωματικóς, "of the body") stem cells, are stem cells which maintain ...
Embryonic stem cells exhibit dramatic and complex alterations to both global and site-specific chromatin structures. Lee et al. performed an experiment to determine the importance of deacetylation and acetylation for stem cell differentiation by looking at global acetylation and methylation levels at certain site-specific modification in histone sites H3K9 and H3K4.
When cells on one side of a stem grow longer and faster than cells on the other side, the stem will bend to the side of the slower growing cells as a result. This directional growth can occur via a plant's response to a particular stimulus, such as light ( phototropism ), gravity ( gravitropism ), water, ( hydrotropism ), and physical contact ...
Directed differentiation is a bioengineering methodology at the interface of stem cell biology, developmental biology and tissue engineering. [1] It is essentially harnessing the potential of stem cells by constraining their differentiation in vitro toward a specific cell type or tissue of interest. [2]
In addition, stem cell are undifferentiated cells which can develop into a specialized cell and are the earliest type of cell in a cell lineage. [2] Due to the differentiation in function, somatic cells are found only in multicellular organisms, as in unicellular ones the purposes of somatic and germ cells are consolidated in one cell .
Diagram showing the development of different blood cells from haematopoietic stem cell to mature cells. Haematopoiesis (/ h ɪ ˌ m æ t ə p ɔɪ ˈ iː s ɪ s, ˌ h iː m ə t oʊ-, ˌ h ɛ m ə-/; [1] [2] from Ancient Greek αἷμα (haîma) 'blood' and ποιεῖν (poieîn) 'to make'; also hematopoiesis in American English, sometimes h(a)emopoiesis) is the formation of blood cellular ...
The process controls the organized spatial distribution of cells during the embryonic development of an organism. Morphogenesis can take place also in a mature organism, such as in the normal maintenance of tissue by stem cells or in regeneration of tissues after damage. Cancer is an example of highly abnormal and pathological tissue morphogenesis.