enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Allele frequency - Wikipedia

    en.wikipedia.org/wiki/Allele_frequency

    Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. [1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size.

  3. Frequency-dependent selection - Wikipedia

    en.wikipedia.org/wiki/Frequency-dependent_selection

    In negative frequency-dependent selection, the fitness of a phenotype or genotype decreases as it becomes more common. This is an example of balancing selection. More generally, frequency-dependent selection includes when biological interactions make an individual's fitness depend on the frequencies of other phenotypes or genotypes in the ...

  4. Genotype frequency - Wikipedia

    en.wikipedia.org/wiki/Genotype_frequency

    if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1. For example, if p=0.7, then q must be 0.3. In other words, if the allele frequency of A equals 70%, the remaining 30% of the alleles must be a, because together they equal 100%. [5]

  5. Gene flow - Wikipedia

    en.wikipedia.org/wiki/Gene_flow

    Positive effects of urban facilitation can occur when increased gene flow enables better adaptation and introduces beneficial alleles, and would ideally increase biodiversity. This has implications for conservation: for example, urban facilitation benefits an endangered species of tarantula and could help increase the population size.

  6. Population structure (genetics) - Wikipedia

    en.wikipedia.org/wiki/Population_structure...

    Population structure (also called genetic structure and population stratification) is the presence of a systematic difference in allele frequencies between subpopulations. In a randomly mating (or panmictic) population, allele frequencies are expected to be roughly similar between groups. However, mating tends to be non-random to some degree ...

  7. Fixation (population genetics) - Wikipedia

    en.wikipedia.org/wiki/Fixation_(population_genetics)

    In the absence of mutation or heterozygote advantage, any allele must eventually either be lost completely from the population, or fixed, i.e. permanently established at 100% frequency in the population. [2] Whether a gene will ultimately be lost or fixed is dependent on selection coefficients and chance fluctuations in allelic proportions. [3]

  8. Allele frequency spectrum - Wikipedia

    en.wikipedia.org/wiki/Allele_frequency_spectrum

    The allele frequency spectrum can be written as the vector = (,,,,), where is the number of observed sites with derived allele frequency .In this example, the observed allele frequency spectrum is (,,,,), due to four instances of a single observed derived allele at a particular SNP loci, two instances of two derived alleles, and so on.

  9. Genetic hitchhiking - Wikipedia

    en.wikipedia.org/wiki/Genetic_hitchhiking

    The other allele, which is linked to the non-advantageous version, will decrease in frequency, in some cases until extinction. [5] [6] Overall, hitchhiking reduces the amount of genetic variation. A hitchhiker mutation (or passenger mutation in cancer biology) may itself be neutral, advantageous, or deleterious. [7]