enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotational spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Rotational_spectroscopy

    For a linear molecule, analysis of the rotational spectrum provides values for the rotational constant [notes 2] and the moment of inertia of the molecule, and, knowing the atomic masses, can be used to determine the bond length directly. For diatomic molecules this process is straightforward.

  3. Clar's rule - Wikipedia

    en.wikipedia.org/wiki/Clar's_rule

    Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such a resonance structure is called a Clar structure. In other words, a ...

  4. Vibrational spectroscopy of linear molecules - Wikipedia

    en.wikipedia.org/wiki/Vibrational_spectroscopy...

    Example of a linear molecule. N atoms in a molecule have 3N degrees of freedom which constitute translations, rotations, and vibrations.For non-linear molecules, there are 3 degrees of freedom for translational (motion along the x, y, and z directions) and 3 degrees of freedom for rotational motion (rotations in R x, R y, and R z directions) for each atom.

  5. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  6. Resonance Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Resonance_Raman_spectroscopy

    Like ordinary Raman spectroscopy, resonance Raman is compatible with samples in water, which has a very weak scattering intensity and little contribution to spectra. However, the need for an excitation laser with a wavelength matching that of an electronic transition in the analyte of interest somewhat limits the applicability of the method. [8]

  7. Fermi resonance - Wikipedia

    en.wikipedia.org/wiki/Fermi_resonance

    In CO 2, the bending vibration ν 2 (667 cm −1) has symmetry Π u.The first excited state of ν 2 is denoted 01 1 0 (no excitation in the ν 1 mode (symmetric stretch), one quantum of excitation in the ν 2 bending mode with angular momentum about the molecular axis equal to ±1, no excitation in the ν 3 mode (asymmetric stretch)) and clearly transforms according to the irreducible ...

  8. Natural resonance theory - Wikipedia

    en.wikipedia.org/wiki/Natural_Resonance_Theory

    (2) The PARENT and CHOOSE operations determine the optimal set of NBOs corresponding to a specific resonance structure. Additionally, CHOOSE is able to eliminate identical resonance structures. (3) A user may then call SELECT to select the structure that best matches to the true molecular structure.

  9. Resonant ultrasound spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Resonant_ultrasound...

    where an are the approximations to the motion expanded in a complete basis set, E comes from the kinetic energy term, and Γ comes from the elastic energy term. The order of the matrices is ~10^3 for good approximations. Equation (5) determines the resonance frequencies from the elastic moduli. [3]

  1. Related searches how to determine if a molecule needs resonance analysis based on state of motion

    how to find molecular vibrationshow to measure molecular vibration