Search results
Results from the WOW.Com Content Network
It encodes the common concept of relation: an element is related to an element , if and only if the pair (,) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers, in which each prime is related to each integer that is ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In the case where R is a binary relation, those statements are also denoted using infix notation by x 1 Rx 2. The following considerations apply: The set X i is called the i th domain of R. [1] In the case where R is a binary relation, X 1 is also called simply the domain or set of departure of R, and X 2 is also called the codomain or set of ...
[6] [7] [8] Operations on functions include composition and convolution. [9] [10] Operations may not be defined for every possible value of its domain. For example, in the real numbers one cannot divide by zero [11] or take square roots of negative numbers. The values for which an operation is defined form a set called its domain of definition ...
As are the set of real numbers or the set of natural numbers: whenever x > y and y > z, then also x > z whenever x ≥ y and y ≥ z, then also x ≥ z whenever x = y and y = z, then also x = z. More examples of transitive relations: "is a subset of" (set inclusion, a relation on sets) "divides" (divisibility, a relation on natural numbers)
If M is a set or class whose elements are sets, then x is an element of the union of M if and only if there is at least one element A of M such that x is an element of A. [11] In symbols: x ∈ ⋃ M ∃ A ∈ M , x ∈ A . {\displaystyle x\in \bigcup \mathbf {M} \iff \exists A\in \mathbf {M} ,\ x\in A.}
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...