Search results
Results from the WOW.Com Content Network
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
torsion coefficient also called torsion constant newton meter per radian (N⋅m/rad) lambda: cosmological constant: per second squared (s −2) wavelength: meter (m) linear charge density: coulomb per meter (C/m) eigenvalue: non-zero vector: mu: magnetic moment
In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.
In such cases, a torsion constant should be substituted, where an appropriate deformation constant is included to compensate for the warping effect. Within this, there are articles that differentiate between the polar second moment of area , I z {\displaystyle I_{z}} , and the torsional constant , J t {\displaystyle J_{t}} , no longer using J ...
A torsion bar is a straight bar of metal or rubber that is subjected to twisting (shear stress) about its axis by torque applied at its ends. A more delicate form used in sensitive instruments, called a torsion fiber consists of a fiber of silk, glass, or quartz under tension, that is twisted about its axis.
In solid mechanics, it is common to analyze the properties of beams with constant cross section. Saint-Venant's theorem states that the simply connected cross section with maximal torsional rigidity is a circle. [1] It is named after the French mathematician Adhémar Jean Claude Barré de Saint-Venant.
For rectangular plates, Navier in 1820 introduced a simple method for finding the displacement and stress when a plate is simply supported. The idea was to express the applied load in terms of Fourier components, find the solution for a sinusoidal load (a single Fourier component), and then superimpose the Fourier components to get the solution ...