enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum stochastic calculus - Wikipedia

    en.wikipedia.org/wiki/Quantum_stochastic_calculus

    Quantum stochastic calculus is a generalization of stochastic calculus to noncommuting variables. [1] The tools provided by quantum stochastic calculus are of great use for modeling the random evolution of systems undergoing measurement , as in quantum trajectories.

  3. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results. [40] Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts ...

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.

  5. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.

  6. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    The J k variable equals the change in S k (q k) as q k is varied around the closed path. For several physical systems of interest, J k is either a constant or varies very slowly; hence, the variable J k is often used in perturbation calculations and in determining adiabatic invariants. For example, they are used in the calculation of planetary ...

  7. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values 3 ...

  8. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    Apparently, the problem of the equivalence between analytic and synthetic approach was completely solved only with Emil Artin's book Geometric Algebra published in 1957. It was well known that, given a field k, one may define affine and projective spaces over k in terms of k-vector spaces. In these spaces, the Pappus hexagon theorem holds.

  9. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.