Ads
related to: how to evaluate complex numbers with exponents worksheeteducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Worksheet Generator
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
In fact, the same proof shows that Euler's formula is even valid for all complex numbers x. A point in the complex plane can be represented by a complex number written in cartesian coordinates. Euler's formula provides a means of conversion between cartesian coordinates and polar coordinates. The polar form simplifies the mathematics when used ...
allowing for attempts to extend tetration to non-natural numbers such as real, complex, and ordinal numbers. The two inverses of tetration are called super-root and super-logarithm, analogous to the nth root and the logarithmic functions. None of the three functions are elementary. Tetration is used for the notation of very large numbers.
The expression is a special case of the expression , where z is any complex number. In general, is defined for complex z by extending one of the definitions of the exponential function from real exponents to complex exponents. For example, one common definition is:
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula , e ix , which offers an even shorter notation for cos x + i sin x , but cis(x) is widely used as a name for this function in software libraries .
Ads
related to: how to evaluate complex numbers with exponents worksheeteducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
kutasoftware.com has been visited by 10K+ users in the past month