Search results
Results from the WOW.Com Content Network
Lift is defined as the component of the aerodynamic force that is perpendicular to the flow direction, and drag is the component that is parallel to the flow direction.. A fluid flowing around the surface of a solid object applies a force on it.
The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...
The force between a fluid and a body, when there is relative motion, can only be transmitted by normal pressure and tangential friction stresses. So, for the whole body, the drag part of the force, which is in-line with the approaching fluid motion, is composed of frictional drag (viscous drag) and pressure drag (form drag).
The definition becomes = ′, where is the reference length that should always be specified: in aerodynamics and airfoil theory usually the airfoil chord is chosen, while in marine dynamics and for struts usually the thickness is chosen. Note this is directly analogous to the drag coefficient since the chord can be interpreted as the "area per ...
Forces of flight on a powered aircraft in unaccelerated level flight. Understanding the motion of air around an object (often called a flow field) enables the calculation of forces and moments acting on the object. In many aerodynamics problems, the forces of interest are the fundamental forces of flight: lift, drag, thrust, and weight. Of ...
In aerodynamics, air is assumed to be a Newtonian fluid, which posits a linear relationship between the shear stress (due to internal friction forces) and the rate of strain of the fluid. The equation above is a vector equation in a three-dimensional flow, but it can be expressed as three scalar equations in three coordinate directions.
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
Similarly to the aerodynamics of flight, powered swimming requires animals to overcome drag by producing thrust. Unlike flying, however, swimming animals do not necessarily need to actively exert high vertical forces because the effect of buoyancy can counter the downward pull of gravity, allowing these animals to float without much effort ...