enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

  3. Decomposition of a module - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_a_module

    A decomposition with local endomorphism rings [5] (cf. #Azumaya's theorem): a direct sum of modules whose endomorphism rings are local rings (a ring is local if for each element x, either x or 1 − x is a unit). Serial decomposition: a direct sum of uniserial modules (a module is uniserial if the lattice of submodules is a finite chain [6]).

  4. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.

  5. Glossary of module theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_module_theory

    A decomposition of a module is a way to express a module as a direct sum of submodules. dense dense submodule determinant The determinant of a finite free module over a commutative ring is the r-th exterior power of the module when r is the rank of the module. differential A differential graded module or dg-module is a graded module with a ...

  6. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    For example, the coproduct in the category of groups, called the free product, is quite complicated. On the other hand, in the category of abelian groups (and equally for vector spaces), the coproduct, called the direct sum, consists of the elements of the direct product which have only finitely many nonzero terms. (It therefore coincides ...

  7. Algebraic character - Wikipedia

    en.wikipedia.org/wiki/Algebraic_character

    Algebraic characters are defined for locally-finite weight modules and are additive, i.e. the character of a direct sum of modules is the sum of their characters.On the other hand, although one can define multiplication of the formal exponents by the formula = + and extend it to their finite linear combinations by linearity, this does not make into a ring, because of the possibility of formal ...

  8. Torsionless module - Wikipedia

    en.wikipedia.org/wiki/Torsionless_module

    More generally, a direct sum of torsionless modules is torsionless. A free module is reflexive if it is finitely generated, and for some rings there are also infinitely generated free modules that are reflexive. For instance, the direct sum of countably many copies of the integers is a reflexive module over the integers, see for instance. [1]

  9. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    A free R-module is a module that has a basis, or equivalently, one that is isomorphic to a direct sum of copies of the ring R. These are the modules that behave very much like vector spaces. Projective Projective modules are direct summands of free modules and share many of their desirable properties. Injective