Search results
Results from the WOW.Com Content Network
The relationship between the general and extended form of Brahmagupta's formula is similar to how the law of cosines extends the Pythagorean theorem. Increasingly complicated closed-form formulas exist for the area of general polygons on circles, as described by Maley et al. [ 3 ]
More specifically, let A, B, C and D be four points on a circle such that the lines AC and BD are perpendicular. Denote the intersection of AC and BD by M. Drop the perpendicular from M to the line BC, calling the intersection E. Let F be the intersection of the line EM and the edge AD. Then, the theorem states that F is the midpoint AD.
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
In mathematics, the Gershgorin circle theorem may be used to bound the spectrum of a square matrix. It was first published by the Soviet mathematician Semyon Aronovich Gershgorin in 1931. Gershgorin's name has been transliterated in several different ways, including Geršgorin, Gerschgorin, Gershgorin, Hershhorn, and Hirschhorn.
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .
In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .
Download as PDF; Printable version; ... , where O is the centre of the circle (secant–secant theorem ). Inscribed angles ... The formula for the unit circle in ...
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.