Search results
Results from the WOW.Com Content Network
Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any ABC with an arbitrary point P on line AB.
More specifically, let A, B, C and D be four points on a circle such that the lines AC and BD are perpendicular. Denote the intersection of AC and BD by M. Drop the perpendicular from M to the line BC, calling the intersection E. Let F be the intersection of the line EM and the edge AD. Then, the theorem states that F is the midpoint AD.
Download as PDF; Printable version; In other projects ... a branch of mathematics, the Hadamard three-circle theorem is a result about the ... A statement and proof ...
The relationship between the general and extended form of Brahmagupta's formula is similar to how the law of cosines extends the Pythagorean theorem. Increasingly complicated closed-form formulas exist for the area of general polygons on circles, as described by Maley et al. [ 3 ]
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Clifford's circle theorems; Constant chord theorem; D.
Whichever continuity is used in a proof of the Gerschgorin disk theorem, it should be justified that the sum of algebraic multiplicities of eigenvalues remains unchanged on each connected region. A proof using the argument principle of complex analysis requires no eigenvalue continuity of any kind. [1] For a brief discussion and clarification ...
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .