enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A graph is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path between the two vertices. A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

  3. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    A verifier algorithm for Hamiltonian path will take as input a graph G, starting vertex s, and ending vertex t. Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end ...

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.

  5. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    Finally, it is clearly NP-hard on all graph classes on which the Hamiltonian path problem is NP-hard, such as on split graphs, circle graphs, and planar graphs. A simple model of a directed acyclic graph is the Price model, developed by Derek J. de Solla Price to represent citation networks. This is simple enough to allow for analytic results ...

  6. Tournament (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tournament_(graph_theory)

    a is inserted between v 2 and v 3.. Any tournament on a finite number of vertices contains a Hamiltonian path, i.e., directed path on all vertices (Rédei 1934).. This is easily shown by induction on : suppose that the statement holds for , and consider any tournament on + vertices.

  7. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).

  8. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Illustration for the proof of Ore's theorem. In a graph with the Hamiltonian path v 1...v n but no Hamiltonian cycle, at most one of the two edges v 1 v i and v i − 1 v n (shown as blue dashed curves) can exist. For, if they both exist, then adding them to the path and removing the (red) edge v i − 1 v i would produce a Hamiltonian cycle.

  9. Fleischner's theorem - Wikipedia

    en.wikipedia.org/wiki/Fleischner's_theorem

    A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square. In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if is a 2-vertex-connected graph, then the square of is Hamiltonian.