Search results
Results from the WOW.Com Content Network
A square is a limiting case of both a kite and a rhombus. Orthodiagonal equidiagonal quadrilaterals in which the diagonals are at least as long as all of the quadrilateral's sides have the maximum area for their diameter among all quadrilaterals, solving the n = 4 case of the biggest little polygon problem. The square is one such quadrilateral ...
Triangular antiprismatic prism, Square antiprismatic prism, Pentagonal antiprismatic prism, Hexagonal antiprismatic prism, Heptagonal antiprismatic prism, Octagonal antiprismatic prism, Enneagonal antiprismatic prism, Decagonal antiprismatic prism
Augmentation involves attaching the Johnson solids onto one or more faces of polyhedra, while elongation or gyroelongation involve joining them onto the bases of a prism or antiprism, respectively. Some others are constructed by diminishment , the removal of one of the first six solids from one or more of a polyhedron's faces.
A twisted prism is a nonconvex polyhedron constructed from a uniform n-prism with each side face bisected on the square diagonal, by twisting the top, usually by π / n radians ( 180 / n degrees) in the same direction, causing sides to be concave.
Every kite is an orthodiagonal quadrilateral (its diagonals are at right angles) and, when convex, a tangential quadrilateral (its sides are tangent to an inscribed circle). The convex kites are exactly the quadrilaterals that are both orthodiagonal and tangential.
square pyramid: Prism: A polyhedron comprising an n-sided polygonal base, a second base which is a translated copy (rigidly moved without rotation) of the first, and n other faces (necessarily all parallelograms) joining corresponding sides of the two bases hexagonal prism: Antiprism
Follow the quadrilateral vertices in the same sequential direction and construct each square on the left hand side of each side of the given quadrilateral. The segments joining the centers of the squares constructed externally (or internally) to the quadrilateral over two opposite sides have been referred to as Van Aubel segments .
Informally: "a box or oblong" (including a square). Square (regular quadrilateral): all four sides are of equal length (equilateral), and all four angles are right angles. An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length.