enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    The Jacobi Method has been generalized to complex Hermitian matrices, general nonsymmetric real and complex matrices as well as block matrices. Since singular values of a real matrix are the square roots of the eigenvalues of the symmetric matrix = it can also be used

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. SLEPc - Wikipedia

    en.wikipedia.org/wiki/SLEPc

    Davidson methods such as Generalized Davidson and Jacobi-Davidson. Conjugate gradient methods such as LOBPCG. A contour integral solver (CISS). Interface to some external eigensolvers, such as ARPACK and BLOPEX. Customization options include: number of wanted eigenvalues, tolerance, size of the employed subspaces, part of the spectrum of interest.

  5. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.

  6. Jacobi method for complex Hermitian matrices - Wikipedia

    en.wikipedia.org/wiki/Jacobi_Method_for_Complex...

    The complex unitary rotation matrices R pq can be used for Jacobi iteration of complex Hermitian matrices in order to find a numerical estimation of their eigenvectors and eigenvalues simultaneously. Similar to the Givens rotation matrices , R pq are defined as:

  7. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    Specifically, if the eigenvalues all have real parts that are negative, then the system is stable near the stationary point. If any eigenvalue has a real part that is positive, then the point is unstable. If the largest real part of the eigenvalues is zero, the Jacobian matrix does not allow for an evaluation of the stability. [12]

  8. Jacobi - Wikipedia

    en.wikipedia.org/wiki/Jacobi

    Jacobi sum, a type of character sum; Jacobi method, a method for determining the solutions of a diagonally dominant system of linear equations; Jacobi eigenvalue algorithm, a method for calculating the eigenvalues and eigenvectors of a real symmetric matrix; Jacobi elliptic functions, a set of doubly-periodic functions

  9. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...