enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  3. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  4. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    The convolution has stride 1, zero-padding, with kernel size 3-by-3. The convolution kernel is a discrete Laplacian operator. The convolutional layer is the core building block of a CNN. The layer's parameters consist of a set of learnable filters (or kernels), which have a small receptive field, but extend through the full depth of the input ...

  5. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  6. Convolution for optical broad-beam responses in scattering ...

    en.wikipedia.org/wiki/Convolution_for_optical...

    As shown by Equation 4, this is a 2-D convolution. To calculate the response of a light beam on a plane perpendicular to the z axis, the beam function (represented by a b × b matrix) is convolved with the impulse response on that plane (represented by an a × a matrix).

  7. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    The problem with polynomials may be removed by allowing the outputs of the hidden layers to be multiplied together (the "pi-sigma networks"), yielding the generalization: [38] Universal approximation theorem for pi-sigma networks — With any nonconstant activation function, a one-hidden-layer pi-sigma network is a universal approximator.

  8. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    The following is a pseudocode of the algorithm: (Overlap-add algorithm for linear convolution) h = FIR_filter M = length(h) Nx = length(x) N = 8 × 2^ceiling( log2(M) ) (8 times the smallest power of two bigger than filter length M.

  9. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    the solution of the initial-value problem = is the convolution (). Through the superposition principle , given a linear ordinary differential equation (ODE), L y = f {\displaystyle Ly=f} , one can first solve L G = δ s {\displaystyle LG=\delta _{s}} , for each s , and realizing that, since the source is a sum of delta functions , the solution ...