Search results
Results from the WOW.Com Content Network
In molecular biology, [1] [2] [3] DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. [4] DNA replication occurs in all living organisms acting as the most essential part of biological inheritance .
The process of duplicating DNA is called DNA replication, and it takes place by first unwinding the duplex DNA molecule, starting at many locations called DNA replication origins, followed by an unzipping process that unwinds the DNA as it is being copied. However, replication does not start at all the different origins at once.
DNA damage in non-replicating cells, if not repaired and accumulated can lead to aging. DNA damage in replicating cells, if not repaired can lead to either apoptosis or to cancer. The schematic diagram indicates the roles of insufficient DNA repair in aging and cancer, and the role of apoptosis in cancer prevention.
During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.
The DNA re-replication response is different from the response taken when damage is due to oxygen radical generation. Damage from oxygen radical generations leads to a response from the Myc oncogene, which phosphorylates p53 and H2AX. [16] The ATM/ATR DNA damage network will also respond to cases where there is an overexpression of Cdt1.
At some point during the replication process, the polymerase dissociates from the DNA and replication stalls. When the polymerase reattaches to the DNA strand, it aligns the replicating strand to an incorrect position and incidentally copies the same section more than once. Replication slippage is also often facilitated by repetitive sequences ...
In genetic engineering, recombination can also refer to artificial and deliberate recombination of disparate pieces of DNA, often from different organisms, creating what is called recombinant DNA. A prime example of such a use of genetic recombination is gene targeting , which can be used to add, delete or otherwise change an organism's genes.
Control of the DNA replication system ensures that the genome is replicated only once per cycle; over-replication induces DNA damage. Deregulation of DNA replication is a key factor in genomic instability during cancer development. [3] This highlights the specificity of DNA synthesis machinery in vivo. Various means exist to artificially ...