Search results
Results from the WOW.Com Content Network
From a purely mathematical viewpoint, it is interesting to know the set of solutions of the Einstein field equations. Some of these solutions are parametrised by one or more parameters. From a physical standpoint, knowing the solutions of the Einstein Field Equations allows highly-precise modelling of astrophysical phenomena, including black ...
The study of exact solutions of Einstein's field equations is one of the activities of cosmology. It leads to the prediction of black holes and to different models of evolution of the universe. One can also discover new solutions of the Einstein field equations via the method of orthonormal frames as pioneered by Ellis and MacCallum. [22]
In general relativity, a scalar field solution is an exact solution of the Einstein field equation in which the gravitational field is due entirely to the field energy and momentum of a scalar field. Such a field may or may not be massless , and it may be taken to have minimal curvature coupling , or some other choice, such as conformal coupling .
Given the difficulty of constructing explicit small families of solutions, much less presenting something like a "general" solution to the Einstein field equation, or even a "general" solution to the vacuum field equation, a very reasonable approach is to try to find qualitative properties which hold for all solutions, or at least for all ...
In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry.
In general relativity, post-Newtonian expansions (PN expansions) are used for finding an approximate solution of Einstein field equations for the metric tensor. The approximations are expanded in small parameters that express orders of deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to ...
The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution, found in 1949 by Kurt Gödel, [1] of the Einstein field equations in which the stress–energy tensor contains two terms: the first representing the matter density of a homogeneous distribution of swirling dust particles (see dust solution), and the second associated with a negative cosmological ...
In general relativity, a dust solution is a fluid solution, a type of exact solution of the Einstein field equation, in which the gravitational field is produced entirely by the mass, momentum, and stress density of a perfect fluid that has positive mass density but vanishing pressure.