enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    This method of generalizing the Pauli matrices refers to a generalization from a single 2-level system to multiple such systems. In particular, the generalized Pauli matrices for a group of qubits is just the set of matrices generated by all possible products of Pauli matrices on any of the qubits. [1]

  4. Spin matrix - Wikipedia

    en.wikipedia.org/wiki/Spin_matrix

    Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices Gamma matrices , which can be represented in terms of the Pauli matrices.

  5. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...

  6. Measurement in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Measurement_in_quantum...

    The Pauli matrices are traceless and orthogonal to one another with respect to the Hilbert–Schmidt inner product, and so the coordinates (,,) of the state are the expectation values of the three von Neumann measurements defined by the Pauli matrices.

  7. Eigenspinor - Wikipedia

    en.wikipedia.org/wiki/Eigenspinor

    In quantum mechanics, eigenspinors are thought of as basis vectors representing the general spin state of a particle. Strictly speaking, they are not vectors at all, but in fact spinors . For a single spin 1/2 particle, they can be defined as the eigenvectors of the Pauli matrices .

  8. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).

  9. Clifford group - Wikipedia

    en.wikipedia.org/wiki/Clifford_group

    The Clifford group is defined as the group of unitaries that normalize the Pauli group: = {† =}. Under this definition, C n {\displaystyle \mathbf {C} _{n}} is infinite, since it contains all unitaries of the form e i θ I {\displaystyle e^{i\theta }I} for a real number θ {\displaystyle \theta } and the identity matrix I {\displaystyle I ...