Search results
Results from the WOW.Com Content Network
10 1: daM 17.5 M pure (glacial) acetic acid (1.05 g/cm 3) [22] 40 M: pure solid hydrogen (86 g/L) [23] 55.5 M: pure water at 3.984 °C, temperature of its maximum density (1.0000 g/cm 3) [24] 10 2: hM 118.8 M: pure osmium at 20 °C (22.587 g/cm 3) [25] 140.5 M: pure copper at 25 °C (8.93 g/cm 3) 10 3: kM: 10 4: 24 kM: helium in the solar core ...
It is a dimensionless quantity with dimension of / and dimensionless unit of moles per mole (mol/mol or mol ⋅ mol-1) or simply 1; metric prefixes may also be used (e.g., nmol/mol for 10-9). [5] When expressed in percent , it is known as the mole percent or molar percentage (unit symbol %, sometimes "mol%", equivalent to cmol/mol for 10 -2 ).
The solution has 1 mole or 1 equiv Na +, 1 mole or 2 equiv Ca 2+, and 3 mole or 3 equiv Cl −. An earlier definition, used especially for chemical elements, holds that an equivalent is the amount of a substance that will react with 1 g (0.035 oz) of hydrogen, 8 g (0.28 oz) of oxygen, or 35.5 g (1.25 oz) of chlorine—or that will displace any ...
Since 1 mole = 6.02214076 × 10 23 particles (atoms, molecules, ions etc.), 1 joule per mole is equal to 1 joule divided by 6.02214076 × 10 23 particles, ≈1.660539 × 10 −24 joule per particle. This very small amount of energy is often expressed in terms of an even larger unit such as the kJ·mol −1 , because of the typical order of ...
The enthalpy of fusion is the amount of energy required to convert one mole of solid into liquid. For example, when melting 1 kg of ice (at 0 °C under a wide range of pressures), 333.55 kJ of energy is absorbed with no temperature change. The heat of solidification (when a substance changes from liquid to solid) is equal and opposite.
For example, water has a molar mass of 18.0153(3) g/mol, but individual water molecules have molecular masses which range between 18.010 564 6863(15) Da (1 H 2 16 O) and 22.027 7364(9) Da (2 H 2 18 O). Atomic and molecular masses are usually reported in daltons, which is defined in terms of the mass of the isotope 12 C (carbon-12).
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]
potassium permanganate has a molar mass of 158.034(1) g mol −1, and reacts with five moles of electrons per mole of potassium permanganate, so its equivalent weight is 158.034(1) g mol −1 /5 eq mol −1 = 31.6068(3) g eq −1.