Search results
Results from the WOW.Com Content Network
This circuit is used for the general case, all T-pads, all pi-pads and L-pads when the source impedance is greater than or equal to the load impedance. The L-pad computation assumes that port 1 has the highest impedance. If the highest impedance happens to be the output port, then use this figure. Unique resistor designations for Tee, Pi and L ...
mass attenuation coefficient, also called mass extinction coefficient, is the attenuation coefficient divided by density; see mass attenuation coefficient for details; absorption cross section and scattering cross section are both quantitatively related to the attenuation coefficient; see absorption cross section and scattering cross section ...
A surge of energy on a finite transmission line will see an impedance of prior to any reflections returning; hence surge impedance is an alternative name for characteristic impedance. Although an infinite line is assumed, since all quantities are per unit length, the “per length” parts of all the units cancel, and the characteristic ...
The A standing for attenuation, or amplification, depending on context. In general, this will be a complex function of jω, which can be derived from an analysis of the impedances in the network and their individual transfer functions. Sometimes the analyst is only interested in the magnitude of the gain and not the phase angle.
The attenuation in the signal of ground motion intensity plays an important role in the assessment of possible strong groundshaking. A seismic wave loses energy as it propagates through the earth (seismic attenuation). This phenomenon is tied into the dispersion of the seismic energy with the distance. There are two types of dissipated energy:
The resonant frequency is defined as the frequency at which the impedance of the circuit is at a minimum. Equivalently, it can be defined as the frequency at which the impedance is purely real (that is, purely resistive). This occurs because the impedances of the inductor and capacitor at resonant are equal but of opposite sign and cancel out.
The equations above find the impedance and loss for an attenuator with given resistor values. The usual requirement in a design is the other way around – the resistor values for a given impedance and loss are needed. These can be found by transposing and substituting the last two equations above; If = =
Specific acoustic impedance z is an intensive property of a particular medium (e.g., the z of air or water can be specified); on the other hand, acoustic impedance Z is an extensive property of a particular medium and geometry (e.g., the Z of a particular duct filled with air can be specified). [citation needed]