enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  3. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  4. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The sagitta (also known as the versine) is a line segment drawn perpendicular to a chord, between the midpoint of that chord and the arc of the circle. Given the length y of a chord and the length x of the sagitta, the Pythagorean theorem can be used to calculate the radius of the unique circle that will fit around the two lines: = +.

  5. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    The area of the base of a cylinder is the area of a circle (in this case we define that the circle has a radius with measure ): B = π r 2 {\displaystyle B=\pi r^{2}} . To calculate the total area of a right circular cylinder, you simply add the lateral area to the area of the two bases:

  6. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.

  7. Circular arc - Wikipedia

    en.wikipedia.org/wiki/Circular_arc

    A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...

  8. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  9. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Arc length s of a logarithmic spiral as a function of its parameter θ. Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification.