Search results
Results from the WOW.Com Content Network
Learning to rank [1] or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. [2] Training data may, for example, consist of lists of items with some partial order specified between items in ...
Similarity learning is used in information retrieval for learning to rank, in face verification or face identification, [9] [10] and in recommendation systems. Also, many machine learning approaches rely on some metric. This includes unsupervised learning such as clustering, which groups together close or
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
In Learning the parts of objects by non-negative matrix factorization Lee and Seung [43] proposed NMF mainly for parts-based decomposition of images. It compares NMF to vector quantization and principal component analysis , and shows that although the three techniques may be written as factorizations, they implement different constraints and ...
In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank). The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1] The original purpose of the algorithm was to improve the performance of an internet search engine.
MDL applies in machine learning when algorithms (machines) generate descriptions. Learning occurs when an algorithm generates a shorter description of the same data set. The theoretic minimum description length of a data set, called its Kolmogorov complexity, cannot, however, be computed.
In 2011, authors of the Weka machine learning software described the C4.5 algorithm as "a landmark decision tree program that is probably the machine learning workhorse most widely used in practice to date". [2] It became quite popular after ranking #1 in the Top 10 Algorithms in Data Mining pre-eminent paper published by Springer LNCS in 2008. [3]
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...