enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    For example, if values {,,,,,} are drawn from the same distribution, then we can treat this set as an unweighted sample, or we can treat it as the weighted sample {,,} with corresponding weights {,,}, and we get the same result either way.

  3. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The maximum likelihood method weights the difference between fit and data using the same weights . The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability ...

  4. Weighted geometric mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_geometric_mean

    The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]

  5. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    Data can be binary, ordinal, or continuous variables. It works by normalizing the differences between each pair of variables and then computing a weighted average of these differences. The distance was defined in 1971 by Gower [1] and it takes values between 0 and 1 with smaller values indicating higher similarity.

  6. Arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_mean

    A weighted average, or weighted mean, is an average in which some data points count more heavily than others in that they are given more weight in the calculation. [6] For example, the arithmetic mean of 3 {\displaystyle 3} and 5 {\displaystyle 5} is 3 + 5 2 = 4 {\displaystyle {\frac {3+5}{2}}=4} , or equivalently 3 ⋅ 1 2 + 5 ⋅ 1 2 = 4 ...

  7. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  8. Generalized mean - Wikipedia

    en.wikipedia.org/wiki/Generalized_mean

    For any q > 0 and non-negative weights summing to 1, the following inequality holds: (=) / = (=) /. The proof follows from Jensen's inequality , making use of the fact the logarithm is concave: log ⁡ ∏ i = 1 n x i w i = ∑ i = 1 n w i log ⁡ x i ≤ log ⁡ ∑ i = 1 n w i x i . {\displaystyle \log \prod _{i=1}^{n}x_{i}^{w_{i}}=\sum _{i=1 ...

  9. PERT distribution - Wikipedia

    en.wikipedia.org/wiki/PERT_distribution

    The triangular distribution has a mean equal to the average of the three parameters: μ = a + b + c 3 {\displaystyle \mu ={\frac {a+b+c}{3}}} which (unlike PERT) places equal emphasis on the extreme values which are usually less-well known than the most likely value, and is therefore less reliable.