Search results
Results from the WOW.Com Content Network
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
Calculate your BMR: 655 + (9.6 x weight in kg) + (1.8 x height in cm) - (4.7 x age in years) ... What is a good BMR number? There isn't a "good" or "bad" BMR. “Each individual has a different ...
BMR is a flexible trait (it can be reversibly adjusted within individuals), with, for example, lower temperatures generally resulting in higher basal metabolic rates for both birds [7] and rodents. [8] There are two models to explain how BMR changes in response to temperature: the variable maximum model (VMM) and variable fraction model (VFM).
To calculate your BMR, you should use the Mifflin-St. Jeor equation, which is the most accurate. Knowing your BMR can help you determine how many calories you should eat a day to lose weight.
Kleiber's plot comparing body size to metabolic rate for a variety of species. [1]Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, states, after many observations that, for a vast number of animals, an animal's Basal Metabolic Rate scales to the 3 ⁄ 4 power of the animal's mass.
“All it takes is to do an online search for the Mifflin-St Jeor calculator to find the number of calories based on weight, age, gender, height, along with an activity factor,” says Escobar.
The Schofield Equation is a method of estimating the basal metabolic rate (BMR) of adult men and women published in 1985. [1] This is the equation used by the WHO in their technical report series. [2] The equation that is recommended to estimate BMR by the US Academy of Nutrition and Dietetics is the Mifflin-St. Jeor equation. [3]
The metabolic equivalent of task (MET) is the objective measure of the ratio of the rate at which a person expends energy, relative to the mass of that person, while performing some specific physical activity compared to a reference, currently set by convention at an absolute 3.5 mL of oxygen per kg per minute, which is the energy expended when sitting quietly by a reference individual, chosen ...